Abstract

Every engineering, computing, and engineering technology program accredited by the Accreditation Board for Engineering and Technology (ABET) has formulated many and varied self-assessment methods. Methods used to assess a program for ABET accreditation and continuous improvement are for keeping programs current with academic and industrial innovation.

The methods used to assess programs are varied and mostly depend on the program and ABET objectives. Assessment instruments include course assessment report (CAR) done solely by faculty for every course that the faculty member teaches, student and faculty survey instruments, industrial advisory board input on curriculum, and the fundamentals of engineering exam (F.E.). These methods provide a continuous self-evaluation of instruction related activities which are critical to maintaining a quality undergraduate program and critical to maintaining ABET accreditation of engineering, computing, and technology programs (www.abet.org, 2015).

This paper examines the usefulness of the exit examination given to senior students in their final year or final semester of the Electronics Engineering Technology program. This examination is comprehensive and covers every course taught in the program. It consists of problems on the analog and digital electronics segments of the program. It also covers ABET's objectives which has to do with life-long learning, diversity, ethical, and professional behavior and responsibilities of engineers, and global issues. The examination is given to students to complete graduation requirements, but the data gained from such examination is also used for self-assessment of the program, as a tool for continuous improvement of the program, and for ABET assessment criteria.

The format of the exit examination, as well as how it conforms to ABET assessment and program objectives is discussed. Further, we provide data and analysis of students’ results over a five year period and show how feedback from the results is used to make improvement to the program.

Introduction

National and international programs that offer baccalaureate degrees in engineering, computing, and engineering technology aspire to reach the highest standards possible. To that effect, programs have formulated many and varied self and external assessment methods. Some of these methods are used as assessment tools for the mentioned programs to obtain or become accredited by the premier accreditation board, ABET (Accreditation Board for Engineering and Technology). Assessment methods also help programs to maintain a continuous improvement plan and to keep current with academic and industrial trends and standards.

Some methods used to assess a program range from a course assessment report (CAR), completed solely by faculty members for every course he/she teaches, student and faculty survey instruments, industrial advisory board inputs into curriculum, and the fundamentals of engineering exams (F.E.), students’ capstone design experience, commonly called senior design project. These methods provide a continuous self-evaluation of instruction related activities which are critical to maintaining a quality undergraduate program and critical to maintaining and obtaining ABET accreditation.

ABET provides leadership in assuring quality of programs and in stimulating innovation in programs. Quality assurance of a program resides within the program itself (Shryock, K. J. & Reed, H.L., 2008 & Estes, A. & Ressler, S., 2007). Programs should be certain of the best methods or tools to evaluate the level of achievement of expected outcomes for the program’s graduates. Successful programs will select assessment methods which strengthen the quality and standards of the program and prepare its graduates for a life of learning and development.

Too often the most common assessment tool used by a department to gather data is the survey method (Shryock et al, 2008, Kelly, W. E., 2005 & Estell, J.K., Yoder, J.S., Morrison, B. B. & Mark, F.K., 2012). This method is quick and easy to disseminate, but, while useful in measuring certain objectives, it can be limiting in measuring others. The survey instrument may provide data on laboratory equipment, instruction (which may be subjective), course scheduling and so on, but lack the appropriate data to provide insight into student learning, levels of quality in graduates, and ability of students to assess their learning. Ultimately, a professional should have the ability to assess their own learning and knowledge and fill in areas where there are gaps in knowledge and skills (Kelly, W. E, 2005 & Dang, Z.E., Rojas-Oviedo & Qiang, X.C., 2003).

Other methods that are used include examinations, quizzes, homework, and research papers. The most popular method is the formal and traditional examination given to assess students’ learning of course content. Whereas most exams are used for internal assessment purposes, some may be used for program evaluation (such as evaluations of students to see if some of the program’s objectives are being met), and also as a useful tool in assessment for the ABET educational objectives.

Any method of assessment must incorporate the different levels of Bloom’s taxonomy of knowledge, comprehensive, application, analysis, synthesis, and evaluation. The very nature of exams lend itself to incorporate knowledge and comprehensive but the remaining levels are more difficult to incorporate into this type of assessment (McGlothlin, Jr. C. W., 2009 & www.bloomstaxonomy.org).

Bloom’s taxonomy provides an important structure to focus on higher order thinking (www.bloomstaxonomy.org). The taxonomy provides a hierarchy of levels which can assist educators in designing performance tasks, crafting questions, and providing feedback to students on their work. Division of questions into different levels exemplifies the focus needed for critical thinking ability. The use of critical thinking in the classroom can be instrumental in developing all levels of thinking within the cognitive domain (www.bloomstaxonomy.org). The results include improved attention to detail, increased comprehension, and expanded problem solving skills.

We discussed the usefulness of using examinations, specifically what we refer to as the exit examination, given to seniors or graduating students in their final semester of our Electronics Engineering Technology program. This examination is comprehensive and covers every course taught in the program. It consists of problems on the analog and digital electronics segments of the program. It also covers ABET’s objectives which has to do with life-long learning, diversity, ethical, and professional behavior.
responsibilities of engineers and technologists, and global issues (www.abet.org, 2015). The examination is given to students to complete graduation requirements but the data gained from such examination is also used for self-assessment of the program, as a tool for continuous improvement of the program, and as ABET assessment criteria. We will show the format of the exit examination as well as, how it conforms to ABET assessment and program objectives. Further, we will provide analysis of the results from the examination and how feedback from the results is used to make improvements to the program.

Method

The exit exam is a three part comprehensive exam. Students taking the exam spend five hours in a room answering ten objective test questions from each course in the program’s curriculum. The exam is separated into three parts; analog and digital courses, and lifelong learning, and ethical and global issues. The analog and digital parts of the exam are done in a room with a proctor for five hours; the third part is a take home portion where the students are provided with current topics in engineering related problems, case studies and other relevant societal and global issues. The students use these topics and cases to write lengthy discussions and provide appropriate solutions or application of engineering, math, and science concepts to solve these issues.

Students are required to take the exam once. If they do not pass they are required to take a course entitled “Special Topics” (ELET 442); this is a 3 hour course. In this course the student works on mastery of the material or concepts where the weakness is evident. The weakness or deficiency is based on the result obtained from the exit exam. The student and faculty member determine the best course of action on how to address the student’s deficiencies. Faculty who have or are currently teaching the course are responsible for writing 10 object test questions. The questions are of the same difficulty that the student would be given on a regular term or final exam. The questions are reviewed once a calendar year to update and add new questions to the test.

This exam is not a one size fits all. But it can be used to fit other programs. As alluded to earlier, it would depend on the program(s) needs and goals. This method of assessment should not be used as the sole method of assessment but used in conjunction with other methods. It is a good tool for testing students’ learning throughout their 4/5 year program.

The analog section of the exam covers the following subject in the curriculum; direct current (DC) circuit analysis, alternating current (AC) circuit analysis, electronic devices, operational amplifier (OPAMP) analysis and applications, communications system analysis and control system analysis.

The digital section covers the following subjects; structural programming with C++, digital logic circuits, and digital hardware design, microprocessor architecture, microprocessor software application, computer control systems, microprocessor interfacing, and advanced structured programming with C++ and microcomputer network.

The third section of the exit exam covers the following subjects: lifelong learning, ethics, and professionalism in Engineering Technology, diversity and global issues.

Throughout the academic year (September 1st to May 31st), the exam is given once per regular semester; summer sessions not included. It is expected that a total of twelve or more students will take the exam for the academic year. To pass the exam students must score an overall score of 70% but they must also demonstrate proficiency in each subject by scoring seven out of ten on the subject matter of the courses. Students obtaining a 70% (7 out of 10) are said to have reached the minimum acceptable level of proficiency in that course. Any score less than 70% is below the proficiency level.

Each course in the program’s curriculum has a list of ABET student outcomes a. to k. The students’ outcomes a-k are used to determine if the educational objectives are being met. The students’ outcomes are as follows (www.abet.org, 2015)

- an ability to select and apply the knowledge, techniques, skills, and modern tools of the discipline to broadly-defined engineering technology activities;
- an ability to select and apply a knowledge of mathematics, science, engineering, and technology to engineering technology problems that require the application of principles and applied procedures or methodologies;
- an ability to conduct standard tests and measurements; to conduct, analyze, and interpret experiments; and to apply experimental results to improve processes;
- an ability to design systems, components, or processes for broadly-defined engineering technology problems appropriate to program educational objectives;
- an ability to function effectively as a member or leader on a technical team;
- an ability to identify, analyze, and solve broadly-defined engineering technology problems;
- an ability to apply written, oral, and graphical communication in both technical and non-technical environments; and an ability to identify and use appropriate technical literature;
- an understanding of the need for and an ability to engage in self-directed continuing professional development;
- an understanding of and a commitment to address professional and ethical responsibilities, including a respect for diversity;
- a knowledge of the impact of engineering technology solutions in a societal and global context; and
- a commitment to quality, timeliness, and continuous improvement.

Whereas the student outcomes mentioned are used primarily for ABET assessment, they are also used internally for program assessment and evaluation. If students fail to meet the minimum proficiency level of 70% in any one of the outcomes, the instructor of that course has to devise an improvement plan which will enable the students to attain the required level of skills to meet or surpass the minimum proficiency level. Below are samples of improvement plans instructors have prepared to deal with deficiencies in some of the courses they have taught. Also given are the guidelines on the preparation of the improvement plans (data was taken from “Comprehensive Exam (Exit Exam) Result and Improvement plan from ELET 441 Comprehensive Exam” (spring 2007 — fall 2013 data analysis)). The examination consists of three sections. namely, Analog course work, Digital course work, lifelong learning, and ethical and global issues sections. Below is a description of the courses from each section.

i. Analog

This section will cover the following subjects in the ELET curriculum:
- ELET 131 DC Circuits
- ELET 133 AC Circuits
- ELET 132 Electronics I
- ELET 232 Electronics II
- ELET 331 Communication Systems
- ELET 332 Control Systems

ii. Digital

This section will cover the following subjects in the ELET curriculum:
- ELET 130 Introduction to Structure Programming with C++
- ELET 241 Digital Logic Circuits
- ELET 243 Digital Hardware Design
- ELET 343 Microprocessor Architecture
- ELET 353 Microprocessor Software Application
- ELET 430 Computer Control System
- ELET 431 Microprocessor Interfacing
- ELET 434 Microcomputer Networks

iii. Lifelong learning and diversity issues (students are given the case study assignments to take home)

This section will cover the following topics:
- Lifelong learning
- Ethics and professionalism in Engineering Technology
- Diversity and global issues

Continuous Improvement Plan Guidelines:

Faculty members are required to utilize the analyzed result and implement a different approach to help students to understand the subject matter better. This is not
Throughout the following discussion outcome ‘A’ will be used as the example to demonstrate the use of the exit examination as an assessment tool. Outcome A: This outcome is being evaluated in the courses shown below. The proficiency level reached is shown along with the outcome is being evaluated in the courses shown below. The proficiency level reached is shown along with the improvement plan was required. The proficiency level reached by students on 5 selected courses for outcome ‘A’ is shown for the spring 2007 semester.

- ELET 130 – Introduction to computer programming with C++: Average outcome is 67%
- ELET 133-AC Circuits: Average outcome is 60%
- ELET 232-Electronics II: Average outcome is 52%
- ELET 331-Communication Systems: Average outcome is 67%
- ELET 332-Control Systems: Average outcome is 63%

Direct instructor feedback regarding the corrective actions for each course are given below.

ELET130:
"I will emphasize more on the problem solving aspect of the programming which utilizes the application of the math. I will also introduce more examples to ensure students gain the better understanding of the topics."

ELET 133:
Students who took the exam and scored below average expressed their concerns verbally, and indicated in writing on the exam paper, that there was no review session for this course prior to the exam. However, students who had taken ELET 133 had performed above average during the semester they had taken the class. Therefore, the results would have been satisfactory if a review session had taken place and students had been given ample time to study the material.

ELET232:
"My plan for improvement to achieve the 70% proficiency standard set by the department in outcome B is as follows: encourage the students to read more on the material being covered in the course. It is my belief that students do not read or prepare for class sufficiently. Therefore, I am going to assign reading assignment on topics to be cover in class. Each student will be responsible for a topic and at the start of class I will spend 5-10 minutes discussing a topic each class period. To ensure that reading is done student will be given the equivalent of the score he/she would receive on a homework assignment; on exercises such as computer simulation of circuits. I believe will help them visualize the operation of circuit components. These measures if executed successfully will help improve students’ knowledge in the course."

ELET331:
"I will solve more problems during the lecture session and I will assign more homework problems to address this concern."

ELET332:
"My plan for improvement to achieve the 70% proficiency standard set by the department in outcome B is as follows: encourage the students to read more on the material being covered in the course. It is my belief that students do not read or prepare for class sufficiently. Therefore, I am going to assign reading assignment on topics to be cover in class. Each student will be responsible for a topic and at the start of class I will spend 5-10 minutes discussing a topic each class period. The examples for the assessment data for the continuous improvement plan were for the spring 2007 semester. Instructors were given two semesters (fall 2007 to spring 2008) to implement these plans and then evaluate to determine if the plans were successful. If the action plans were successful meaning no deficiencies were found after the two semesters then no further corrective action was needed and the instructor continue the previous plan. The data obtained for the fall 2007 to spring 2008 semesters show that significant improvements were made and students achieved the required proficiency level."

Implementation of the Continuous Improvement Plan:

According to the analyzed data from spring 2007, fall 2007 and spring 2008, it was noted that the average of both analog and digital sections of the exam showed notable improvement. The average of the analog section improved by 8.3% while the average for Digital section showed improvement of 8.8%. It appears that the improvement plan worked. Therefore, the recommendation suggested that the continuous improvement plan be continued. Table 1. This table shows the action plan applied to the courses with deficiencies in fall 2007. The comparison between the result of the exam in fall 2007 to spring 2008 and the result of the exam from spring 2007 illustrates a reasonable improvement.

Analysis

As mentioned above, the samples shown were taken from the exit exam data collected over a six year period. The data was used to accomplish two purposes; one for ABET accreditation assessment and second for internal program assessment and evaluation as part of the electronic engineering technology (ELET) program’s continuous improvement. This program is ABET accredited and recently received reaccreditation for six more years in August 2014.

The various improvement plans put forth by the respective faculty members indicated a positive correlation between the implementation of plans and improvement in performance on the various outcomes (a-k) assessed over six years of data collection for the exit exam. Because the data obtained from the exam has a zero probability of being skewed by the instructors, it is considered reliable and accurate. The data is trustworthy because it is the chair of the department who proctors the exams and the result of the exam from spring 2007 illustrates a reasonable improvement.
Over the course of six years the trend has been mainly positive in improvements of the outcomes a-k. This trend has remained steady throughout that time period. Increases of 2% to 8% on average have been recorded for all outcomes especially for the example outcome ‘A’ used earlier. Figure 1 shows a bar graph for outcome ‘A’ of spring 2013 for several of the courses in the ELET program. Only two courses did not meet the required level of proficiency, but it should be noted that the courses considered earlier have all met the proficiency level. So even after six years of data the students are still meeting the mark set for them. This is attributed to implementation of those improvement plans and continuous feedback received from the results of the exit exams.

Conclusion
The exit exam document prepared for the ABET accreditation visit was 76 pages long. The document covered six years of assessment, evaluation, and improvement plans. When the document is examined as a whole it shows significant improvements in students’ performance, and program strength and quality. Because of continuous improvement in the ELET program we have been enjoying record enrollment in the program over the past few years. There is no doubt that using the exit examination as an assessment tool has contributed to the success of the ELET program.

References
2. Kelly, W. E. Assessment and Improvement — Defining Best Practice The Catholic University of America, Washington, DC 20064

Dr. Graham Thomas is an Associate Professor of Electrical and Computer Engineering in the Department of engineering in the College of Science, Engineering and Technology at Texas Southern University. He received his Ph.D. in Electrical Engineering from New Mexico State University, New Mexico. Dr. Thomas’ research interests include, but are not limited to, System on Chip (SoC) testing, alternative sources of energy, bio-magnetism, and engineering education and development (curriculum and pedagogical change and integration across disciplines). Dr. Thomas’ experience includes traditional and non-traditional classroom teaching styles as well as online classroom teaching. He also has experience working in industrial setting where he was an analog and digital design engineer.

Dr. Shahryar Darayan received a Ph.D. degree in Electrical Engineering from University of Houston in 1993. At the present, he is a professor and program coordinator of Electronics Engineering Technology program at Texas Southern University. Some of his former research works include the development of software/hardware system to determine dielectric properties of sample at UHF and VHF ranges, guarded-electrode method to support MWD tools, and the development of an inversion technique to correct the contact problem in VHF apparatus. Dr. Darayan’s research areas are applied electromagnetic and instrumentation, computer hardware and software design, and numerical methods.