Adoption of a Non-Lecture Pedagogy in Chemical Engineering: Insights Gained from Observing an Adopter

Golter, P.B. Thiessen, D.B. Van Wie, B.J. Brown, G.R.
Washington State University Portland State University

Abstract
Promoting the adoption of an alternative pedagogy can be a difficult process. Many professors are not interested in significantly modifying how they teach their course. Those that are interested in pedagogical reform still have concerns that must be addressed before or during an implementation. This paper presents a case study following the stepwise adoption of an alternative pedagogy, with special emphasis on the insights given by the adopting professor. Adoption related literature reveals that data has limited use in convincing people to adopt new technologies or techniques. While the literature also makes it clear that early adopters are in some way disposed towards innovations, our case study indicates that adopters can be developed through a process of awareness building, both of the need for and the process of the innovation.

Introduction
Efforts to bring about system-wide reform in engineering education can be frustratingly slow. While engineering educators continue to churn out new assessments and implementations of alternative pedagogies, as can be seen at the annual ASEE conferences, their efforts have not resulted in widespread reform and traditional lectures, homework, and tests continue to be the dominant pedagogy in engineering. The question becomes, why does change occur so slowly in spite of an active body of enthusiastic researchers? This paper chronicles a case in which a new adopter was brought into an innovation. The experiences of the new adopter provide some insights that should help inform future research and discussion on implementing new pedagogies in engineering education. We begin by describing why adoption of educational innovations is of interest in engineering education. This is followed by a description of the innovation involved in this study, and some broad background on adoption of innovation in general, with specific focus on education innovations in a higher education setting. We then provide a brief biographical sketch of the professor brought into the innovation and another, slightly more detailed, description of the innovation as developed and as practiced by the new adopter. Following this is a summary of the assessments used as part of the innovation. The next section details the new adopter’s perceptions of the utility of the various assessments and how they pertain to the overall goals of innovation. Finally we provide some reflections on what was learned.

Background on the Problem
The call to more effectively prepare future engineers is ubiquitous (Holmes & Clizbe, 1997; Rugarcia, Felder et al., 2000). Central to the call is the failure of traditional pedagogies to meet the challenge. That failure reflects, in part, the failure among educators to adopt practices that demonstrate the shortcomings of traditional pedagogies and the opportunities to improve learning provided by new pedagogies that are active, hands-on and collaborative. More specifically, engineering in the field is active and inductive while engineering in the classroom is passive and deductive (Felder & Silverman, 1988; Tobias, 1990; Felder, 1996). The call to address this mismatch is not new and in the context of rapid global change and challenge, it is increasingly urgent.

Yet the response remains sluggish. Do we need more and better research? Fairweather observes in the National Academies of Sciences commissioned papers report (2009), “NSF and association-funded reforms at the classroom level, however well intentioned, have not led to the hoped for magnitude of change in student learning, retention in the major, and the like in spite of empirical evidence of effectiveness (Eiseman & Fairweather, 1996; Fairweather & Beach, 2002).” More recently, a team of researchers led by the Nobel Prize winning physicist Carl Wieman, speculating that naturally skeptical scientists would be convinced to try new pedagogies if the evidence were available, concluded “research and data on student learning . . . were seldom compelling enough by themselves to change faculty members‘ pedagogy” (Wieman et al., 2010).

The question then is how can we encourage the adoption of research-based pedagogies? With more than 20 years of research that demonstrates the added value of hands-on (HL), active (AL), cooperative (CL), or problem-based learning (PL), it has been established in the literature that these innovations can be more effective than having students copy lengthy derivations (Felder, 2004). Furthermore, they are more in line with the current needs of industry where engineers work together in diverse, interdisciplinary teams who creatively tackle design problems not found anywhere in standard texts (Varma, 2003). If we don’t do something we are left with the usual alternative, professor at the front, students in rows facing forward, and only a handful of students really engaged and asking questions or responding to questions from the professor and the ever increasing cry for measurable educational improvement from stakeholders in industry and governments around the globe (Nunn, 1996; Labi, 2010).

The concern remains: The country, and perhaps the world, are graduating engineers play in meeting those challenges (NAE, 2004). Even as the NSF, NIH, ABET, AAC&U, and innumerable organizations affiliated with education amplify the call for innovation and change, change remains elusive. If more than 20 years of research and several thousand studies have done little to help faculty supplant or enhance old pedagogies, and research continues to fail to inform or guide practice, then what motivates change among those who do adopt research-based pedagogies. In turn, what can we learn from those faculty that might be useful in promoting the adoption of pedagogies that are researched-based and are subsequently more likely to help address the challenges facing engineering education in the increasingly urgent broader global context?

Background and History of CHAPL Development
The complex challenge that is outlined above presages our experience with the Washington State University (WSU) Cooperative, Active, Hands-on,
Barriers to Pedagogical Innovation Adoption

We are not alone. Change is hard, and the adoption of innovation is tediously or perhaps even perilously slow. Though the specific situation of many adoption research articles are not directly related to education, the general principles of innovation adoption (and the failures) are, according to theorists like Rogers and Shoemaker (1971), related. Rollins (1993) provides a brief summary of adoption and diffusion of innovation research. In Rollins’ view, innovators share common traits. He breaks them out:

Early adopters are:
- “Venturesome,” “eager to try new ideas,” and they are “risky.”
- “Respected by peers,” regarded as “opinion leaders,” and tend to be “more integrated into the local social system.”

The early majority:
- “Interact frequently with their peers” and “may deliberate for some time before completely adopting a new idea.”
- “Follow with deliberate willingness in adopting innovations, but seldom lead.”

The late majority:
- “Adopt new ideas just after the average member of a social system.”
- “Are skeptical” and “the pressure of peers is necessary to motivate adoption.”

Finally, laggards:
- “Tend to be frankly suspicious of innovations and change agents.”
- “Are traditional”
- “Tend to be frankly suspicious of innovations and change agents.”

Rollins’ model of adopters implies a dispositional element that is influential when an individual might adopt an innovation. The dispositional influence is borne out, on a larger scale, in Jippies and Majoors’ (2008) study of the cultural influence of rates of adoption of problem-based learning in medical education in Europe. There is a demonstrable effect wherein measurable aspects of a country’s culture correlate to rates of adoption of problem-based teaching methods within that country.

Lockley (1992) notes that, with regard to medical innovations, the first step of innovation adoption is to introduce the innovation to the local community of practitioners. Once introduced, the rate of adoption can be affected by the number of “independent pieces of information” available about the innovation, the complexity of the innovation, and the degree to which the innovation departs from normal practice. Lam, et al. (2004) note that the barriers for the adoption of evidence-based medicine in Hong Kong include:

1. A mismatch between the evidence-based environment and the teaching environment in which the practitioners learned.
2. The perceived relevance and availability of research, most of which is produced in a different culture.
3. Lack of opportunity to practice.
4. Time constraints.

Wieman, et al. (2010), and Hoey and Nault (2002) note the propensity of academics to be skeptical, and the academic culture, they assert, is plagued by “trust issues.” In addition, as Fisher, et al. (2003) report, the academic culture upholds a pronounced culture of individual autonomy that they argue also inhibits the spread of innovation. Another contribution is the context that faculty serves many masters (research, service and teaching) - faculty are busy. Though the need for change and innovation in teaching practices are recognized, and though some have tracked the patterns of how innovation adoption transpires, how and why change happens, and when it does, in engineering education remains elusive.

If convincing research does not drive adoption, what does? We postulated that a combination of easy to use adoption tools and a broad spectrum of adoption choices combined with convincing research might aid in improving adoption rates. In this context, we follow the case of one early adopter with the goal of developing more focused and ultimately successful strategies for spreading the adoption of powerful teaching innovations.

Methodology

This project follows a simple case study methodology (Stake, 1978). First, recruit an instructor to teach a section of the course in which we have been innovating. Then, have the new instructor implement portions of the overall innovation in a manner that builds up to the full innovation, while having an instructor familiar with the innovation teach a parallel section of the course using the full innovation from the beginning. Along the way, observe what the instructor needs, and develop tools and materials to ease the process of introducing the innovation.

The Recruited Instructor

Co-author, Professor David Thiessen was recruited to assist with the project. He first became aware of CHAPL pedagogies at one of Bernard Van Wie’s seminars and was interested in learning more and perhaps trying it out. The innovation made logical sense and matched Thiessen’s disposition. He “liked hands-on active learning.” It is, he notes, “the way I learn.” So being more intentional about providing hands on opportunities, according to Thiessen, “just sounds like a good idea.” In addition, he notes, the modules represent something that “you could make” and was clearly something with some additional professional endorsement reflected in the fact that it was a project that Van Wie had received funding for.

The CHAPL Course

The blend of innovations Thiessen saw that intrigued him, as described in Golter, et al. (2005), includes a pedagogical approach in which the instructor and teaching assistants act as coaches to assist groups in narrowing the discussion focus, probing and guiding groups when misconceptions are encountered, and, on occasion, assisting groups in resolving interpersonal conflicts. One of the pedagogical tools central to this approach is the "Jigsaw" or "Expert" group
member idea advanced by Aronson et al (1978) where students are first split into Home Groups and team members are assigned a set of concepts relevant to the broad field of either fluid mechanics and/or heat transfer. Immediately after this, new “Jigsaw” teams were formed and comprised of students from each Home Group who share responsibility for a concept. Each Jigsaw team is provided access to a small hands-on module to allow exploration of their concepts. Jigsaw teams are charged with the task of taking two class periods to study concepts embedded within a given module and develop a learning package to take back to their home groups. All of the Jigsaw learning packages are edited by the instructor to assure they are rigorous and appropriate for the activity. After returning to their Home Groups each “Expert” has a class period to guide the rest of their group members through the exercises. The entire process occurs once for the fluid mechanics and once for the heat transfer portions of the class. Other textbook problems are given throughout the semester and are representative of the material being learned or those that contribute to an important concept or knowledge base not addressed in the hands-on activities. The first half of the semester finishes with two class periods of group work on an open-ended fluid-flow design project intended for expansion to include heat transfer design aspects for two days at the end of the second half of the semester. Finally, each group presents their project preceding completion, during or following class period, of an exam.

Transition Section — Thiessen Designs and Implements His Own Version of the Innovation

By design, Thiessen’s approach was initially a “toe-dip” into group work, as part of an NSF project to develop a transition assimilation package that will take students and professors through a progression in pedagogies by a series of incremental steps.

The first day of class was a traditional lecture in which the Bernoulli equation was derived and an example problem was started. The first class period involved an active learning element in which students worked in groups on different aspects of the example problem begun on the first day of class. Preliminary lecturing was wrapped up at the start of the third class period with a brief review of transport and an explanation of the friction factor as a transport coefficient. Several class periods involved a short lecture (25-30 minutes) on a particular topic followed by a demonstration of the topic.

Thiessen selected to implement take-home quizzes, due at the start of class, and organized his course to include a topic of the day to help students prepare for the in-class activities and discussion. Students worked in groups to record data and fill out the worksheets he developed. The instructor and a senior level undergraduate teaching assistant worked with groups to elicit discussion and try to draw out misconceptions. Thiessen also modeled a series of conceptual questions, relevant to the experiment, which were frequently included in the worksheets. Thiessen maintained a good deal of conventional instructional strategies in his adaptation of the innovation. He included end-of-class problems assigned as homework, roughly half for groups and half for individuals.

Several of Thiessen’s class periods had the same basic format as the full CHAPL, but the equipment was used in a hands-on mode with groups taking turns with the available Desktop Learning Module or DLM, Figure 1, which takes advantage of a new low-cost 1 ft x 1 ft platform module made to fit on top of a four-legged desk or small table (Golter et al., 2008). The modules accept small, see-through interchangeable 5” x 7” fluid mechanics and heat transfer cartridges and are usable in the standard classroom. Because of the plug-and-play modality of the DLM, instructors and students spend little time becoming acquainted with the new equipment and the focus can be on teaching and learning.

In addition to developing his own worksheets, Thiessen deviated from the Van Wie approach by innovating using a convenient aspect of using the DLMs for hands-on work. Since all groups worked with the same cartridge on a given day, Thiessen elected to try to reduce some of the students’ confusion, a persistent challenge to innovators who implement “unusual pedagogies,” by interspersing short mini-lectures according to his sense of the learning bottlenecks. Having multiple pieces of the same equipment enabled Thiessen to give mini-lectures that would be relevant to the entire class rather than just one group.

The phased implementation culminated after one half a semester in a full CHAPL environment (with team work substituting for the Jigsaw approach). Again, this is also the intent of the current NSF project which seeks to develop a set of materials, e.g., the DLMs, and companion guidebook so that a professor can gradually build pedagogical expertise throughout a semester and then settle in on use of a broader set of pedagogical approaches tailored to their personal comfort level. Though not all professors may end up using the full CHAPL design, where all pedagogies are used simultaneously, they will at least become more skilled in the use of a variety of teaching and learning strategies and can effectively weigh their benefits for potential continued classroom implementation.

Finally, each half of the semester ended with a design project, as was done in the CHAPL section. The second half, heat transfer portion, of the semester followed the same format as the full CHAPL section, only differing in that DLMs were used for three of the units (double-pipe, shell-and-tube and radiator) and, where DLM cartridges are not yet available, dresser-sized modules for two units (fluidized bed and boiler).

Assessment Overview

As noted in the introduction, research-based evidence is rarely convincing to promote innovation. There remains the question of how the assessments used in research are viewed by outsiders. Are they considered valid and useful? What might it take to convince a skeptic of the utility of the assessments? The insights provided by Thiessen in his effort to understand the impact of the various aspects of the bundled innovation offer a useful window into the thinking of an outsider in this regard. To capture these insights, we held frequent discussions with Thiessen throughout and after the semester. These unstructured discussions were basically just probing conversations aimed at drawing out Thiessen’s thinking regarding aspects of the course, the pedagogy, and the assessments we have been using.

To assess student gains in the CHAPL pedagogy, we had been using a mixture of qualitative and quantitative methods. First we used selected questions
Because of confounding issues such as the lack of a true control group, the assessment compromised the focus on instruction. Students were not introduced to the criteria and process. They were not provided rubric or criteria-based feedback from their first analysis, and they were not introduced to the criteria preceding their second analysis. Specifically, they were not provided structured practice with problem identification, assumption identification, criteria preceding their second analysis. The Critical Thinking Rubric – From “Squishy” to Solid Insight

Initially, Thiessen had doubts about the rubric-based assessment method, and the doubts as well as the methodology preceded this study. As Thiessen explained, “It seemed kind of squishy.” Moreover, Thiessen’s doubts were compounded by the lapse of time across a semester. He felt that the score could be easily influenced by a long delay between ratings, which would introduce additional variation in the determination of scores. So Thiessen did a simple experiment, rating one paper multiple times over a few months. He was surprised to find that the scores he ascribed were virtually identical.

Still, like the Concept Inventory, the statistics surrounding the assessment of students’ critical thinking were meaningless, for the same reasons.

Both Thiessen and Van Wie considered the shortcomings of the assessment. It was, again, not really aligned with instruction. The focus on the assessment compromised the focus on instruction. Students were not introduced to the criteria and process. They were not provided rubric or criteria-based feedback from their first analysis, and they were not introduced to the criteria preceding their second analysis. Specifically, they were not provided with structured practice with problem identification, assumption identification and analysis, or instruction in how to marshal evidence and develop and implement solutions. The assessment had been conceptualized post hoc, to prove the value of the CHAPL pedagogy, not to learn how to improve it. The realization, Thiessen observed, was not trivial.

Table 1

<table>
<thead>
<tr>
<th>Concept Name</th>
<th>Pre</th>
<th>Midpoint</th>
<th>Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservation of Mass</td>
<td>1</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Bernoulli Equation including barometric equation</td>
<td>2</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>Linear Momentum Conservation</td>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Energy vs. Temperature</td>
<td>3</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Heat vs. Energy</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

Results

The Concept Inventories – Mapping Tests to What Matters

Because of confounding issues such as the lack of a true control group, small class sizes and low numbers of questions, the statistics are essentially meaningless. Yet more important than the statistics, Thiessen recognized early that there were a few challenges with the Concept Inventories (CI).

First, he noted that the items were sometimes technically flawed. Specifically, one of the questions regarding natural convection from a heated cylinder had an answer that was correct only for a vertical orientation. However, the cylinder in the problem was oriented horizontally. While this is probably still a sufficient question for students who are beginning this subject, it was extremely off-putting to a subject-matter expert who was used to being concerned about flow in low gravity environments.

The CI questions were incongruous with the activities he conducted in the class and with the concepts embodied in the desktop modules. Perhaps because this class is focused on the applied, equipment-focused aspects of Fluid Mechanics and Heat Transfer, it focuses more on procedural knowledge rather than conceptual knowledge. Even more importantly, both Thiessen and Van Wie came to believe that the results didn’t capture the value-added attributes of the DLMS and the CHAPL innovation. The CI, though rigorously developed (and still being refined), did not adequately map what was most valued by the faculty in our case. An increased awareness of how the equations the students use tie into the physical reality of the equipment.
Student Perceptions and Principles of Good Practice: What We Test versus What We Measure

In both Van Wie’s and Thiessen’s courses, and unlike the Concept Inventory and Critical Thinking assessments, the results were clear and positive. The innovative courses demonstrated exceptional alignment with principles of best practice. For a few select examples of specific questions that demonstrated this across both courses:

- 61 percent of students agreed or strongly agreed that “I worked harder than I thought I could to meet the instructor’s standards or expectations.”
- 70 percent of students agreed or strongly agreed that “I feel comfortable telling the instructor of this course when I disagree with something s/he has said.”
- 91 percent of students agreed or strongly agreed that “I improved at collaborating with peers.”

These are indications of high expectations, faculty — student interaction, and inter-student cooperation, respectively.

Though often maligned, Thiessen and Van Wie both realized not all student self-perception measures are alike. If there had been doubt and differences in perceptions preceding this, Thiessen and Van Wie agreed that, of all the assessments in this innovation, results in the Flashlight Survey were the least ambiguous. More importantly, they recognized that, though still incomplete, the Flashlight Survey aligned most fully with their own perceptions and observations of students’ experience in classes that experienced the innovations. “Our tests,” Thiessen observed, “don’t really get at it compared to what we see here.”

Student Evaluations and Metacognition: The Persistent Challenge

If the Flashlight survey added clarity, the departmental student evaluation instrument stirred old mud. Van Wie’s innovation has been plagued by consistently mediocre evaluations. Though he is the last to deny some merit to students’ critique, the persistent complaint contrasts with the Flashlight survey and reveals again the gap between students’ cultured expectations and the peril one courts with innovations that require students to change. The consistent complaint Van Wie receives is that students are frustrated with the expectation that they work together and “too hard for the allotted credits” to “figure things out.” At the same time, they consistently praise the course because it mirrors, more than any other course in their curriculum experience, the “kind of work we will be asked to do as professional engineers.”

Between this rock and hard place, Thiessen’s course evaluations, with less emphasis initially on promoting student independence or agency, do not obtain the same bi-modal distribution or expressions of indignation.

Insights from Thiessen

When Thiessen first observed the full CHAPL Section taught by Van Wie, he had mixed feelings. By disposition he is quiet, far from a natural lecturer. As a learner himself, he found observing and doing to be essential—and in no way counter to engaging in hard study. He realized that what he observed was more like what he experiences when he works with engineers in the field rather than the conventional classroom: Groups talking! Nobody standing in front of the group and lecturing, providing answers to questions, as lecture critics have suggested, that had not yet been asked. Rather, what he observed was students engaged in exploring the equipment (Figure 2) and wrestling to understand what they were observing as they manipulated the modules—the real time dynamics of heat transfer and fluid mechanics. Thiessen understood that what students were doing was observing and discussing fundamental chemical engineering concepts.

In the midst of this ill-structured classroom, and what was intuitive to Thiessen, were what educators have come to recognize as principles of good educational practice: Students interacting with students, students engaging the challenge with their individual approaches to learning, students engaging diverse ways of knowing; students interacting with the professor, students encountering and wrestling with unusually high expectations, and students in a context in which feedback was rich and rapid (Chickering & Gamson, 1987).

There is additional research supporting the CHAPL pedagogy, but Thiessen was familiar with articles by Felder and, consistent with Wieman et al, he had much less familiarity in the broader base of educational literature. Felder, Thiessen shares, particularly with his established expertise in the subject and his “practical” orientation, was particularly influential. In the course of sharing the teaching opportunity and designing his own course, later Thiessen read more literature, and he recognizes that delving into the literature “makes us realize our ignorance.”

What Thiessen repeatedly notes is that traditional lecture environments, while perfectly functional for transmitting information, provide limited opportunities for instructors to observe, guide and measure the development of students’ learning (Bligh, 2000). By contrast, placing students in a situation where they are expected to learn through discussion, either among themselves or with the instructor, provides the instructor with an opportunity to observe the students’ thinking. This affords the opportunity to gain insights and introduce feedback into the students’ conceptual understanding. This in turn provides the instructor with an opportunity to immediately address conceptual misunderstandings as they arise.

Thiessen also believed that the best way to implement a partial CHAPL was to “step in slowly; wade in.” He says he was “basically lecturing, but also used principles of research design with demonstration of the units rather than at first implementing the hands-on opportunity for students.” He confesses that
he was “not convinced with the jigsaw approach.” He saw that group work was effective “for some, the ones who took it seriously,” but he adds, “only a few really took it seriously,” which is “something that might be corrected by implementation.” Instead, he “liked mini-lectures,” which are often requested by students convinced that somebody needs to tell them what they “need to know.”

Thiessen was also concerned with the lessons students are asked to write in Van Wie’s section. He elected to develop his own worksheets. “You need to re-write what students’ developed anyway. Plus, jigsaws are a logistical nightmare.”

Van Wie’s students have consistently expressed difficulty with his conviction and practice that demands students take full responsibility for articulating and answering their own questions, working through difficulties on their own. A typical quote from student feedback is:

“It needs more lecturing. The group learning is a good idea if it was supplemented with some teaching from the instructor. Without lecturing, like this class, I felt like I was struggling and it felt like I was spending way too much time. Also I wasn’t sure all the time if I was approaching and working out problems correctly.”

Thiessen elected not to confront this aspect of students’ expectations or counter this attribute of the conventional approach to teaching. In his mini-lectures, Thiessen addressed the whole class from the board when he or they encountered common problems, in effect adopting a just-in-time strategy. For example, a mini-lecture was used to explain how to apply a control-volume analysis to the Venturi meter. At the same time, Thiessen also appreciated and adopted Van Wie’s approach and used the mini-lecture with discretion. It was sometimes more useful, Thiessen felt, not to intervene. Both Van Wie and Thiessen also adopted group work in their approaches with the additional belief or understanding that it is important for students to assume greater responsibility for their own learning, and the only way to effectively accomplish that is to charge them with responsibility to figure things out for themselves. Both agree that making the determination when to intervene is perhaps “more art than science.” As Weinberger observes, “Knowledge is not a result merely of filtering or algorithms. It results from a far more complex process that is social, goal-driven, contextual and culturally-bound. We get to knowledge — especially ‘actionable’ knowledge — by having desires and curiosity, through plotting and play, by being wrong more often than right, by talking with others and forming social bonds, by applying methods and then backing away from them, by calculation and serendipity, by rationality and intuition, by institutional processes and social roles” (Weinberger, 2010).

General Reflections

We have attempted to document the learning curve, expectations and attitudes of the instructors involved in order to shed light on the challenges confronting adoption of innovative pedagogy. After having taught their respective sections of the course, the two professors reflected on their experiences. As Thiessen reported, implementing the innovation rich transitional CHAPL provided its own compelling arguments and reward for adoption — the opportunity to provide feedback precisely where and when students encountered critical challenges to their learning. Similarly, using a rubric initially seen as “squishy” emerged as a method with more solid “anchors” that helped Thiessen understand the extent of students’ understanding with greater consistency than he initially anticipated and subsequently gained a better understanding of a way to provide additional, richer feedback than had been available to him using traditional grading techniques. These gains are not trivial.

What emerged from the discussions of the results and the challenges in trying to implement an assessment to persuade the adoption of the innovation was the realization that the assessment didn’t adequately convince or persuade us one way or the other. More disconcerting, we realized that much of our focus for the past 10 years has been on using assessment to prove rather than improve.

We realized part of the reason was our perception of the expectation of our granting program managers who we have understood to require such “proof” of increased learning. But in our years of effort, once again reflected in the all too common finding that there was no significant difference between our two groups, we recognized a pressing need for more useful models of assessment. We have gained with our assessment some small insight into what students have learned, but we have learned little from the CIs about how students have learned in ways that reflect on those components of the CHAPL strategy that are unique. More precisely, we have gleaned little from results of either the CIs or the multiple choice questions that have preceded them in our work that has helped us refine and improve the way either Van Wie or now Thiessen have organized the class or approached their teaching. Moreover, the Concept Inventories, with little alignment to the specific activities in which students engaged, were also not particularly valuable for determining the grades of students. The potential value of an objective assessment has been compromised by the problematic reality that students are not likely to provide a representative performance when questions have little context related to the experiences they have had in the class. This, in turn, challenges the utility of the assessment as a measure not only of measuring, but for promoting learning.

In the course of our deliberations, we also realized that the pursuit of proof was distracting us from making important refinements in our own course. We reviewed the ongoing challenges we’ve had trying to fulfill grant expectations and the perception that “proof” of the innovation is required, and that such proof is dependent upon “objective” measures like the CI. However, we have never adequately been able to address the perceived need for a suitable large sample size, or to sufficiently control for population variation, pedagogical balance, and all the other attributes of a formal controlled study. Moreover, we also recognized that no aspect of our innovation is without substantial body of research that has already established the veracity of the initiative, and yet that research has done little in helping us promote adoption of all or part of CHAPL with many of our colleagues. Educational evidence has made little headway here or elsewhere. Perhaps the most striking example of this comes from one our own observations, when we asked our faculty subjects of this study if results on the purportedly objective CI were to demonstrate that the lecture was producing significantly better results, would they go back and lecture? When the answer was no, we had to stop and scratch our heads.

We’re not the first to observe this, and one landmark study that illustrates this is Lead Center study comparing collaborative learning with lectures (Wright et al., 1998). After extensive consideration about what measures would be persuasive for comparing the two pedagogies or treatments, the Wisconsin science faculty involved in the study finally agreed they would not be able to agree. Instead, they decided to conduct double blind interviews with students randomly selected from each treatment. Following interviews with students, faculty overwhelmingly reported that students from the collaborative learning groups outperformed the lecture groups, demonstrating what faculty described as deeper and more flexible understanding of the science. But more to the point of our case, neither the objective tests nor student evaluations used in the study as supplementary measures made the distinction the group of faculty clearly identified. Students in the collaborative learning class were quicker in their ability to recall, more thorough and more creative in their ability to apply the information, and more confident in their understanding. The point, buried in the study that focused on collaborative learning, was a simple truth most educators know in their hearts — our tests and assessments capture, at best, only a small portion of the learning we most value.

Confirming and disconfirming the general assessment of innovators, Thiessen was, as an “early adopter,” by disposition and experience and he was
prepared to be “venturesome and risky.” Though as a quiet researcher he was “respected,” he was, counter to the innovation adoption blueprint, more of an outsider to the system. As a professor in the Physics department, though from a Chemical Engineering background, he was probably not fully “integrated into the local social system.” In addition, he was probably more aligned with the “early majority.” He was clearly deliberative and cautious about moving in, taking only pieces of the innovation and reintegrating with it attributes of the tradition—most notably “mini-lectures.”

Still, having chronicled the adoption and placed the subject in the established framework of the literature of adoption, the presenting challenge remains—what have we learned that might help encourage more educators to more systematically adopt the innovation?

For years our team has focused on assessment to persuade adoption. We have demonstrated qualified, but usually significant gains in students’ understanding of the critical concepts of Chemical Engineering.

Conspicuous in its absence in all of these assessments is attention to learning opportunities that focus on the development of students’ metacognition and their understanding of the context in which they are learning. The CHAPL methodology relies on the kinds of collaboration and hands-on application that presages what students will encounter in the engineering profession.

The adoption and the imperative to adopt this kind of innovation are not unrelated. The case we have reported here illustrates the adoption and adaptation of the innovation. The essential ingredients appear to have little to do with the formal assessments that we have hoped will illustrate the merits of the CHAPL pedagogy. Perhaps the most important attribute of this adoption has been the disposition and the pre-disposition of the incoming faculty. The pre-disposition influenced his interest and decision to attend workshops on teaching and to find like-minded colleagues in the program who were exploring pedagogies that reflected the principles presented by Felder, Angelo and that are, not incidentally, abundant in the teaching and learning research literature. Most importantly, it has been the opportunity in the implementation of CHAPL to overhear or participate in students’ collaboration, which provides insight and opportunity to address students’ learning “just in time.” Thiessen’s understanding of that opportunity and his interest in students’ metacognition—how they learn and how they think about their learning—mirrors his own unspoken interest in his own metacognition as a researcher and as a life-long learner.

What we have been doing is proving that innovations which are already proven, work, or like the saying goes, “rounding up the posse after the rustlers have been caught” (Gary Crooks). The absence of metacognition and lifelong learning in the curricula reflects the misdirection of educational research and our own educational shortcomings having survived, as rarities, mid-20th Century industrial pedagogies ourselves. No more research needs to be done, counter to the running research conclusion. Since it is clear that we need external motivation to rise to the challenges we face in engineering education, it is time for ABET, funding agencies and educational journals to step in and advance their guidelines, similar to what has been done within the new NSF TUES solicitation. Specifically, future research needs to focus on how students and faculty are learning rather than how much they know or how many multiple choice questions they get right. It is not only the opportunity to help students and ourselves learn more on how we learn so that we can do better, it is a focus that will help faculty understand the limits and expansive possibilities of our own learning.

It is clear, from this experience and the literature, that data and well-designed studies are not sufficient in and of themselves to promote adoption of alternative pedagogies. At this point in time, where lectures remain the norm, adopters will be mostly “early adopters.” From the literature it appears that a critical mass of adopters is required in order to move on to involving the “early majority.” It may be possible to convince more professors of the value of an alternative pedagogy by raising their awareness of the need for and outcomes of the pedagogy. If the trends here are similar to what is seen in medical practice, there will also need to be multiple, independent bodies of evidence that an innovation is being accomplished in order to promote adoption on a larger scale. One possible route to this is convincing professors to experience the innovation in action.

Acknowledgements

We gratefully acknowledge the support of NSF through grant numbers DUE 0618872 and DUE 1023121, and a World Bank STEPB Grant through collaboration with the Chemical Engineering Department at Ahmadu Bello University, Nigeria. Of significant value are the insights of machinist Gary K. Held, and undergraduate Jonathan Windsor who assisted in the design of the DLMs and associated cartridges. Also of importance was the assistance of Rebecca Cantrell Hogaboam in helping to set up the DLMs for DTS classes and the various volunteer teaching assistants throughout the years who wanted to learn something about teaching pedagogy. We also acknowledge the assistance of the WSU Office of Assessment and Innovation through the former director, co-author G. Brown.

References

Fairweather, J. (2009). Linking evidence and promising practices in science, technology, engineering, and mathematics (STEM) undergraduate education, The National Academies National Research Council Board of Science Education.

NSF (2010). Transforming undergraduate education in science, technology, engineering and mathematics (TUES) course, curriculum, and laboratory improvement (CCLI), National Science Foundation Directorate for Education & Human Resources Division of Undergraduate Education. PROGRAM SOLICITATION NSF 10-544.

Appendix

1) Identifies and understands the problem.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannot identify or understand the problem:</td>
<td>Identifies main problem:</td>
<td>Understands the Problem:</td>
<td>Understands the problem and its implications:</td>
<td>Integrates concepts from other subjects:</td>
<td>Full and complete understanding of the problem and its underlying theory:</td>
</tr>
<tr>
<td>“What are you asking for”</td>
<td>“This is what he wants us to do.”</td>
<td>“This is what we need to do, and this is why”</td>
<td>“If we did X it might cause Y”</td>
<td>“We need to consider X, which we learned about in Y”</td>
<td>“Sure I can derive that from scratch! (on the back of my napkin in this restaurant without any references)”</td>
</tr>
</tbody>
</table>

2) Identifies and presents the STUDENT’S/Group’s OWN method as it is important to the solution.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doesn’t know how to begin the problem:</td>
<td>Approaches the problem by modifying a textbook example:</td>
<td>Background supplies appropriate solution method:</td>
<td>Recognizes problem may be unique:</td>
<td>Can develop unique solutions from fundamental theory if needed:</td>
<td>Can develop a novel method worthy of publication (in a trade or academic journal):</td>
</tr>
<tr>
<td>“Where do I start”</td>
<td>“They did it this way, so if I make these small changes it will work for me.”</td>
<td>“This is how we usually solve this type of problem”</td>
<td>“Does the usual solution method apply?”</td>
<td>“If we go back to the fundamentals we can do it this other way.”</td>
<td>“No ones ever tried this before but it should work really well.”</td>
</tr>
</tbody>
</table>

Identifies and assesses the key assumptions.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uses equations that look like they might work:</td>
<td>Uses the correct equation:</td>
<td>Recognizes the conditions for which an equation was developed and can modify the equation for different assumptions:</td>
<td>Can correctly select assumptions for a system based on an analysis of the physical components:</td>
<td>Recognizes commonly idealized assumptions and can determine their applicability:</td>
<td>Knows, from experience, when 20% is close enough.</td>
</tr>
<tr>
<td></td>
<td>“We used eqn. X because that is what is used for this.”</td>
<td>“Lets add a component for turbulent flow”</td>
<td>“We have open channel flow, so we can’t use a no-slip condition for all surfaces.”</td>
<td>“This is the 1% of the time when X doesn’t apply.”</td>
<td>“3.14 is close enough for pi.”</td>
</tr>
</tbody>
</table>

3) Assess the quality of the solution.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does not care about the quality of the solution:</td>
<td>Wants the “right answer”:</td>
<td>Questions physical validity of the solution:</td>
<td>Understands impact of physical components on the solution and how differing physical portions would impact the solution:</td>
<td>Understands appropriate application and impact of errors throughout the system:</td>
<td>Can identify the impact of various fundamental theories upon the problem solution:</td>
</tr>
<tr>
<td>“Well I got an answer.”</td>
<td>“What did you get?” “What does the answer book say?”</td>
<td>“Does my answer make physical sense?” “Is it realistic?”</td>
<td>“What if the pipe was bigger?”</td>
<td>“Well, are measurements are really only so good, so our solution is ……”</td>
<td>“If we account for the compressibility it will change in this direction.”</td>
</tr>
</tbody>
</table>

3.14 is close enough for pi.
Bernard J. Van Wie has been teaching for 31 years, first as a graduate student at the University of Oklahoma, and then as a professor at Washington State University. Over the past 15 years, he has devoted himself to developing novel teaching approaches that include components of cooperative/collaborative, hands-on, active, and problem/project-based learning (CHAPL) environments.

Paul B Golter is the Instructional Laboratory Supervisor for Washington State University’s Voiland School of Chemical Engineering and Bioengineering Department and has been working on educational innovations for the last 10 years. His PhD thesis focus was on the development of a novel pedagogy, critical thinking assessment and a set of equipment that allows simple fluid mechanics and heat transfer experiments to be performed in standard college classrooms.

Gary R. Brown has been in higher education for more than 30 years. He has an interdisciplinary PhD and has been working with colleagues in almost every discipline. His expertise is in educational assessment with a strong background in technology and innovations. Dr. Brown was lead developer of Washington State University’s well recognized Critical Thinking rubric, now used at 100s of institutions worldwide. Gary has received best research awards seven times and has been active in several professional organizations including American Association of Colleges and Universities (AAC&U) where he serves as a Senior Fellow, and with the American Evaluation Association (AEA). His current position is Associate Vice Provost of Academic Excellence and Director of Academic Excellence and PSU Online at Portland State University where he continues to work with several regional and professional associations to assure accreditation efforts are increasingly useful for faculty involved in assessment.

David B. Thiessen received his PhD in Chemical Engineering from the University of Colorado in 1992 and has been at Washington State University since 1994. His research interests include fluid physics, acoustics, and engineering education.